8 resultados para Elastase

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cathelicidins 是天然免疫系统中的一种带正电的宿主防御肽段,它们广泛地 分布在哺乳类及其他一些物种如鱼类,鸟类中。它们均包含保守的前肽区和多变 的C-末端成熟抗菌肽区域,该抗菌肽区域无论是在种间还是种内都不保守。 我们首次分别从爬行纲眼镜蛇科的眼镜蛇,金环蛇,眼镜王蛇三种毒蛇的毒 腺cDNA 文库中克隆了3 个cathelicidin 编码序列。所克隆到的序列编码的开放 阅读框架均长576bp,编码191 个氨基酸残基组成的蛋白前体。从cDNA 开放阅 读框推导得到的毒蛇cathelicidin 都含有22 个氨基酸残基组成的信号肽, 135 个 氨基酸残基组成的cathelin 保守区域以及34 个氨基酸残基组成的成熟肽区域。 与哺乳类中的cathelicidin 基因的高度多样性不同,来源于3 种毒蛇的cathelicidin 基因在核酸和蛋白水平都比较保守。结构分析表明,以上3 种毒蛇的cathelicidin 成熟肽由第157 位的Val 被elastase 切割而产生。采用化学合成法合成推导得到 的眼镜王蛇的cathelicidin(OH-CATH)。在1% NaCl 的浓度下,该合成肽对测试 的多种细菌具有很强的抑菌活性,MIC 值为1-20 μg/ml。与此同时,即使当浓度 高达200 μg/ml 时,该合成的肽段对人的红细胞依然没有溶血活性。对脊椎动物 的cathelicidin 遗传进化树分析发现毒蛇类的cathelicidin 聚在一起。从进化上看, 蛇的cathelicidin 与来源于小鼠、大鼠、兔的中性粒细胞颗粒蛋白更接近。毒蛇 的cathelicidin 可能为新药开发提供了一个很好的模板。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amphibian skin secretions contain many bioactive compounds. In the present work, an irreversible serine protease inhibitor, termed baserpin, was purified for the first time from the skin secretions of toad Bufo andrewsi by Successive ion-exchange and gelfiltration chromatography. Baserpin is a single chain glycoprotein, with an apparent molecular weight of about 60 kDa in SDS-PAGE. Baserpin is an irreversible inhibitor and effectively inhibits the catalytic activity of trypsin, chymotrypsin and elastase. SDS-stable baserpin-trypsin complex could be seen in SDS-PAGE indicates that it possibly belongs to the serpin superfamily. According to the association rates determined, baserpin is a potent inhibitor of bovine trypsin (4.6 X 10(6) M-1 S-1), bovine chymotrypsin (8.9 X 10(6) M-1 s(-1)) and porcine elastase (6.8 X 10(6) M-1 s(-1)), whereas it shows no inhibitory effect on thrombin. The N-terminal sequence of baserpin is HTQYPDILIAKPXDK, which shows no similarity with other known serine protease inhibitors. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel potent trypsin inhibitor was purified and characterized from frog Bombina maxima skin. A full-length cDNA encoding the protein was obtained from a cDNA library constructed from the skin. Sequence analysis established that the protein actually comprises three conserved albumin domains. B. maxima serum albumin was subsequently purified, and its coding cDNA was further obtained by PCR-based cloning from the frog liver. Only two amino acid variations were found in the albumin sequences from the skin and the serum. However, the skin protein is distinct from the serum protein by binding of a haem b (0.95 mol/mol protein). Different from bovine serum albumin, B. maxima albumin potently inhibited trypsin. It bound tightly with trypsin in a 1: 1 molar ratio. The equilibrium dissociation constants (K-D) obtained for the skin and the serum proteins were 1.92 x 10(-9) M and 1.55 x 10(-9) M, respectively. B. maxima albumin formed a noncovalent complex with trypsin through an exposed loop formed by a disulfide bond (Cys(53)-Cys(62)), which comprises the scissile bond Arg(58)(P-1)-His(59)(P-1'). No inhibitory effects on thrombin, chymotrypsin, elastase, and subtilisin were observed under the assay conditions. Immunohistochemical study showed that B. maxima albumin is widely distributed around the membranes of epithelial layer cells and within the stratum spongiosum of dermis in the skin, suggesting that it plays important roles in skin physiological functions, such as water economy, metabolite exchange, and osmoregulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel trypsin inhibitor termed BATI was purified to homogeneity from the skin extracts of toad Bufo andrewsi by successive ion-exchange, gel-filtration and reverse-phase chromatography. BATI is basic single chain glycoprotein, with apparent molecular weight of 22 kDa in SDS-PAGE. BATI is a thermal stable competitive inhibitor and effectively inhibits trypsin's catalytic activity on peptide substrate with the inhibitor constant (K-i) value of 14 nM and shows no inhibitory effect on chymotrypsin, thrombin and elastase. The N-terminal sequence of BATI is EKDSITD, which shows no similarity with other known trypsin inhibitors. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By Sephadex G-50 gel filtration, Resource Q anionic exchange and C4 reversed phase liquid high performance liquid chromatography, a proteinase inhibitor protein (Ranaserpin) was identified and purified from the eggs of the odour frog, Rana grahami. The protein displayed a single band adjacent to the molecular weight marker of 14.4 kDa analyzed by SDS-PAGE. The inhibitor protein homogeneity and its molecular weight were confirmed again by MALDI-TOF mass spectrometry analysis. The MALDI-TOF mass spectrum analysis gave this inhibitor protein an m/z of 14422.26 that was matched well with the result from SDS-PAGE. This protein is a serine proteinase inhibitor targeting multiple proteinases including trypsin, elastase, and subtilisin. Ranaserpin inhibited the proteolytic activities of trypsin, elastase, and subtilisin. It has an inhibitory constant (K-i) of 6.2 x 10(-8) M, 2.7 x 10(-7) M and 2.2 x 10(-8) M for trypsin, elastase, and subtilisin, respectively. This serine proteinase inhibitor exhibited bacteriostatic effect on Gram-positive bacteria Bacillus subtilis (ATCC 6633). It was suggested that ranaserpin might act as a defensive role in resistance to invasion of pests or pathogens. This is the first report of serine proteinase inhibitor and its direct defensive role from amphibian eggs. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By Sephadex G-50 gel filtration, cation-exchange CM-Sephadex C-25 chromatography and reversed phase high-performance liquid chromatography (HPLC), a novel serine protease inhibitor named bungaruskunin was purified and characterized from venom of Bungarus fasciatus. Its cDNA was also cloned from the cDNA library of B. fasciatus venomous glands. The predicted precursor is composed of 83 amino acid (aa) residues including a 24-aa signal peptide and a 59-aa mature bungaruskunin. Bungaruskunin showed maximal similarity (64%) with the predicted serine protease inhibitor blackelin deduced from the cDNA sequence of the red-bellied black snake Pseudechis porphyriacus. Bungaruskunin is a Kunitz protease inhibitor with a conserved Kunitz domain and could exert inhibitory activity against trypsin, chymotrypsin, and elastase. By screening the cDNA library, two new B chains of beta-bungarotoxin are also identified. The overall structures of bungaruskunin and beta -bungarotoxin B chains are similar; especially they have highly conserved signal peptide sequences. These findings strongly suggest that snake Kunitz/BPTI protease inhibitors and neurotoxic homologs may have originated from a common ancestor. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Further to the previous finding of the rainbow trout rtCATH_1 gene, this paper describes three more cathelicidin genes found in salmonids: two in Atlantic salmon, named asCATH_1 and asCATH_2, and one in rainbow trout, named rtCATH_2. All the three new salmonid cathelicidin genes share the common characteristics of mammalian cathelicidin genes, such as consisting of four exons and possessing a highly conserved preproregion and four invariant cysteines clustered in the C-terminal region of the cathelin-like domain. The asCATH_1 gene is homologous to the rainbow trout rtCATH_1 gene, in that it possesses three repeat motifs of TGGGGGTGGC in exon IV and two cysteine residues in the predicted mature peptide, while the asCATH_2 gene and rtCATH_2 gene are homologues of each other, with 96% nucleotide identity. Salmonid cathelicidins possess the same elastase-sensitive residue, threonine, as hagfish cathelicidins and the rabbit CAP18 molecule. The cleavage site of the four salmonid cathelicidins is within a conserved amino acid motif of QKIRTRR, which is at the beginning of the sequence encoded by exon W. Two 36-residue peptides corresponding to the core part of rtCATH_1 and rtCATH_2 were chemically synthesized and shown to exhibit potent antimicrobial activity. rtCATH_2 was expressed constitutively in gill, head kidney, intestine, skin and spleen, while the expression of rtCATH_1 was inducible in gill, head kidney, and spleen after bacterial challenge. Four cathelicidin genes have now been characterized in salmonids and two were identified in hagfish, confirming that cathelicidin genes evolved early and are likely present in all vertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

两栖类动物的皮肤是其得以生存的重要器官,它担负着许多生理功能,如呼吸、水份调节、温度控制、排泄、繁殖、抵抗微生物、防御天敌等。存在于两栖动物皮肤分泌物中的生物活性成分已成为研究热点。目前,己分离鉴定出许多具有各种生物活性的蛋白质及多肤。通过三步分离纯化过程:DEAE-SephadexA-50离子交换,SephadeX075凝胶过滤,和DEAE-SephadexA-50离子交换层析,我们从大蹼铃蟾(Bombinamaxima)皮肤匀浆物中分离得到纯化的大蹼铃蟾皮肤白蛋白(Bm-A-skin)。SDS-PAGE电泳表明,该蛋白为单链蛋白质,在还原状态下表观分子量为67kDa。非还原状态下至少存在三条带,分子量分别为50,55和110kDa。经N-端氨基酸序列分析,其序列均相同,故该蛋白在SDS存在下有同分异构体及多聚体形式。根据所测得的N端氨基酸序列及内肤序列设计引物,通过筛选已构建的大蹼铃蟾皮肤cDNA文库,获得了编码该蛋白的全长cDNA。经序列分析发现该蛋白由三个保守的血清白蛋白结构域组成,并且同人血清白蛋白及牛血清白蛋白的序列相似度分别为39%和38%。随后,我们从血清中也分离纯化到血清白蛋白(BmA-serum),并通过RT-PCR,从大蹼铃蟾肝脏中扩增得到其全长cDNA序列。对由cDNA序列推导的两个大蹼铃蟾白蛋白的氨基酸序列进行比较,发现二者基本相同,只有两个氨基酸的差异,即BmA-skin的Gly417,Ser569,在BmA-serum中均为Asn。造成这两个氨基酸差异的只有一个碱基的突变,即编码BmA-skinGly417,Ser569密码子的第二位碱基A在BmA-serum中变为G。另外,从肝脏获得的BmA-serum的cDNA3'非翻译区还有8个碱基的插入。经扫描光谱分析,BmA-skin含有大量的血红素b,含量为0.95moFinol蛋白,而BmA-serum中含量较少,为0.05mol/mol蛋白。经schiff试剂染色发现,BmA-skin及BmA-serum均为非糖蛋白质。两者均具有抑制trypsin水解小肚底物的活性,但对其它丝氨酸蛋白酶的活性则无抑制,如thrombin、chyomotryPSin、elastase及substilisin。利用表面等离子共振技术研究BmA-skin及BmA-serum与trysin的相互作用,分别得到它们与trrpsin结合的动力学常数,解离平衡常数KD为两者均通过由一对二硫键cys53-Cys62形成的一个暴露的活性位点环,以1:1分子摩尔比同tryrsin形成稳定的非共价结合的复合物,其反应活性位点为Arg58(P1)-His59(P1')。利用免疫组织化学方法研究发现,BmA-skin广泛地分布于成年大蹼铃蟾上皮细胞的细胞膜及真皮的疏松结缔组织层。表明其在蛙皮肤的生理功能中发挥重要作用,如水及代谢物质交换,渗透压的维持,皮肤呼吸等。另外,我们还从非洲爪蟾(xenopus勿即is)的血清及皮肤中分离到其68扔a的血清白蛋白,经初步鉴定也具有trtPsin抑制活性,但其抑制机制与B.maxima白蛋白不同,还有待于进一步研究。通过MTT法研究发现,BmA-skin对人T淋巴细胞H9、C8166及hemin处理的红白血病细胞K562具有细胞毒活性。三种细胞经BmA-skin处理72h,CC50A片段化,细胞核形态变化及流式细胞仪分析,结果显示,BmA-skin具有选择性诱导细胞调亡的特性。而BmA-serum对三种细胞均无毒性作用,单独的hemin对三种细胞的,胜也很弱。实验结果表明,BmA-skin结合的血红素b可能对其细胞毒及诱导细胞调亡的活性具有较大的贡献。用Cy3标记的BmA-skin与Hg和C8166细胞保温后,发现其进入细胞内发挥作用,这可能是其诱导细胞调亡机制之一。